Arctic News

Arctic News Feed abonnieren







Climate Plan | About | FAQ | Threat | Extinct | Feedback | Action | Policies | Feebates | Debate | Contact | MoreSam Caranahttps://plus.google.com/116629411241539621639noreply@blogger.comBlogger517125
Aktualisiert: vor 1 Stunde 46 Minuten

Wildfires

Do, 13/07/2017 - 15:18
Levels of carbon dioxide (CO2) in the atmosphere are accelerating, even though emissions from fossil fuel burning have remained virtually the same over the past few years.

One of the reason behind this is accelerating emissions from wildfires as temperatures are rising.

Wildfires in Nevada caused CO2 to reach levels as high as 742 ppm on July 12, 2017 (green circle image on the right).

Global warming is greatly increasing the chance for what was previously seen as an extreme weather event to occur, such as a combination of droughts and storms. Heat waves and droughts can cause much vegetation to be in a bad condition, while high temperatures can come with strong winds, storms and lightning.

Wildfires cause a range of emissions, including CO2, soot, methane and carbon monoxide (CO). In Nevada, CO levels were as high as 30.43 ppm (green circle image right).
 

Above satellite image below shows the smoke plumes and the charred area. The google maps image below further shows where the fires were burning.


At the moment, wildfires are hitting many places around the world.

Wildfires caused carbon dioxide to reach levels as high as 746 ppm on July 11, 2017 (green circle on image on the right).

Carbon monoxide levels in the area were as high as 20.96 ppm on July 10, 2017.

The satellite image shows wildfires in Kazakhstan on July 9, 2017.


The satellite images show wildfires in Kazakhstan on July 11, 2017.


Meanwhile, temperatures keep rising. Surface temperature as high as 53.1°C or 127.5°F were forecast in Iran for July 11, 2017, at the location marked by the green circle on the image below.


At 1000 mb (image below), temperatures in Iran were forecast to be slightly lower, i.e. as high as 51.9°C or 125.3°F at the location marked by the at green circle, but note the difference in color, especially over Greenland, the Himalayas and the Tibetan Plateau.


The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.


Rain Over Arctic Ocean

Mo, 10/07/2017 - 12:56
It's raining over the Arctic Ocean and the rain is devastating the sea ice. What are the conditions that led to this?

As has been known for a long time, energy is added to Earth due to emissions by people and this translates into a warmer troposphere with more water vapor, warmer oceans and stronger winds.

Warming is hitting the Arctic particularly hard, due to numerous feedbacks, as illustrated by the sea surface temperature anomalies image on the right.

On July 6, 2017, cyclonic winds lined up to create a 'perfect storm'. As a result, an Atmospheric River of moisture was driven through Bering Strait into the Arctic Ocean, as shown on the images below.


On July 6, 2017, 1500 UTC, winds in Bering Strait were as high as 58 km/h (36 mph) at surface level (green circle on above image left), and as high as 82 km/h (51 mph) at 850 mb (green circle on above image right).

On July 6, 2017, surface temperatures of the air in Bering Strait were as high as 8.1°C (46.5°F) (green circle on image right).

Another indication of the strength of the wind driven through Bering Strait is wave height. On July 6, 2017, waves were as high as 3.35 m or 11 ft in the Bering Strait, at the location marked by the green circle on the image on the right.

The relatively warm and moist air driven through Bering Strait by strong winds is causing rain to fall over the sea ice of the Arctic Ocean, as shown on the video and images further below.

On July 7, 2017, high air temperatures were recorded over land and over the water.

The image below shows temperatures recorded at two locations over the Mackenzie River, one of 32.6°C or 90.8°F at the mouth of the Mackenzie River and another one of 34.7°C or 94.5°F further inland. Warm water from rivers can substantially warm up the sea surface and thus melt the sea ice.

Temperature of the surface of the water was 10°C or 50.1°F where the water was pushed into the Bering Strait, while temperatures as high as 46.9°C or 116.3°F were recorded over California.


The combined impact of high temperatures, strong winds, high waves and warm river water, rain water and melt water looks set to further devastate what sea ice is left in the Arctic Ocean.

Rain can be particularly devastating. The very force at which rain strikes can fracture the sea ice where it's weak, while pools of rainwater and meltwater will form at places where the sea ice is stronger. Where fractures appear in the sea ice, warm water can reach further parts of the ice and widen the cracks.

The video below shows rain over the Arctic Ocean. The video was created with cci-reorganizer.org forecasts from July 3, 2017, 18:00 UTC to July 17, 2017, 00:00 UTC.


Arctic sea ice is in a terrible shape. Sea ice volume is at a record low, as indicated by the Wipneus image below showing volume anomalies from 2002.
The image below, by Torstein Viddal, shows how low the 2017 year-to-date average sea ice volume is.


An additional danger is wildfires. Due to high temperatures, wildfires have broken out near the Mackenzie River, as illustrated by the satellite image below.


Wildfires come with a lot of emissions, including soot that darkens the surface when settling down, thus further speeding up warming.

The situation is dire and calls for comprehensive and effective action as described at the Climate Plan.




High Waves Set To Batter Arctic Ocean

Di, 06/06/2017 - 16:33
High temperatures hit Pakistan end May 2017. The image below shows readings as high as 51.1°C or 123.9°F on May 27, 2017 (at green circle).


As the image below shows, sea temperature was as high as 32.6°C or 90.6°F on May 28, 2017 (at the green circle), 1.8°C or 3.2°F warmer than 1981-2011.


High temperatures over land and at the sea surface reflect an atmosphere that contains huge amounts of energy. On May 27, 2017, the Convective Available Potential Energy (CAPE) was predicted to be as high as 6976 J/kg at the location in the United States marked by the green circle. Storms subsequently hit a large part of the United States, with baseball-sized hail reported in the Kansas area.


Storms look also set to hit the Arctic Ocean over the next few months.

Waves as high as 2.34 m or 7.7 ft are forecast to hit the Arctic Ocean on June 8, 2017, at the location marked by the green circle.

How is it possible for waves to get that high in a part of the Arctic Ocean that is surrounded by continents that act as shields against winds?

On June 8, 2017, temperatures are forecast to be as high as 40.6°C or 105.2°F near Phoenix, Arizona, and as high as 26.0°C or 78.7°F in Alaska, as the image below shows.


These high temperatures on land are warming up the Arctic Ocean in a number of ways. Firstly, as above image shows, warm air is getting blown from Siberia over the Arctic Ocean.

Secondly, high temperatures on land can strongly warm up water of rivers flowing into the Arctic Ocean.

Thirdly, rising temperatures in the Arctic are causing wind patterns to changing, in particular the jet stream.

The image on the right shows the same area as above image, but this time showing a forecast for the jet stream for June 8, 2017.

As temperatures over the Arctic rise faster than they do at the Equator, the jet stream becomes more wavy, and where loops extend over the Arctic Ocean, as the image shows, they can bring strong winds and higher temperatures into the Arctic. Strong winds can cause high waves and these waves can break up the sea ice, mix warmer water all the way down to the seafloor, and destabilize hydrates that can contain huge amounts of methane.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.



Arctic Warming - Update May 2017

Mo, 22/05/2017 - 05:37
The image below illustrates how much and how fast oceans are warming on the Northern Hemisphere.
Trend points at 1.5°C warmer NH oceans in 2025. Shaded area covers seasonal fluctuations and natural variability.As ocean warming continues, prospects for the sea ice in the Arctic are grim.

Warmer water is melting the sea ice from below. The image on the right shows ever less sea ice volume in the Arctic, reflecting huge thinning of the sea ice over the years.

As the sea ice gets thinner, it becomes ever more prone to break up in pieces that will melt quicker (as more surface area becomes exposed to heat from the atmosphere and heat from the water).

[ images from: Arctic Sea Ice May 2017 ]Moreover, with more open water, stronger waves and winds can develop, increasing the chances that sea ice will melt and get pushed out of the Arctic Ocean.

El Niño looks set to strike again this year and the Arctic looks set to be hit much stronger than the rest of the world, as illustrated by the image on the right. The images below show updated indications for El Niño 2017.


Above on the right is a NOAA animation showing a Kelvin Wave forming in the Equatorial Pacific. The image on the left is the most recent frame from this animation.


[ click on images to enlarge ]Above image shows ECMWF (European Centre for Medium-Range Weather Forecasts) plumes with strong positive anomalies in all three El Niño regions (image on right shows location of regions).

In other words, temperatures in 2017 look set to be very high, which spells bad news for the Arctic where temperature anomalies are already several times higher than in the rest of the world.

As a reminder, take February 2016.
Globally, it was 1.65°C warmer then, compared to 1890-1910, as shown on the inset of the image on the right.

Anomalies in the Arctic were even higher. As the main image on the right shows, it was around 6°C warmer at latitudes north of 70°N.

Note that insufficient data were available to include latitudes north of 85°N in the analysis, as also indicated by the grey areas on the image.

To get  an idea of the situation north of latitude 80°N, have a look at the image on the right, by Nico Sun, showing freezing degree days anomaly over the years, compared to the 1958 - 2002 mean temperature.

Warming looks set to strike the Arctic even harder and high levels of greenhouse gases over the Arctic are contributing to this.

The Scripps image below illustrates this, showing that carbon dioxide levels at Mauna Loa are now well above 410 ppm.
The image on the right shows carbon dioxide levels on May 18, 2017. The color indicates that the highest levels were present over the Arctic.

Temperature anomalies in the Arctic have already been the highest in the world for years, as also illustrated by the NOAA image below on the right, showing temperature anomalies above 2.5°C over the Arctic Ocean over the  365-day period up to May 18, 2017.

[ click on images to enlarge ]There is a huge danger that temperatures will accelerate very rapidly in the Arctic, as self-reinforcing feedbacks are starting to kick in with greater force.

This applies in particular to feedbacks associated with loss of snow and ice cover in the Arctic and to methane releases from clathrates contained in sediments at the seafloor of the Arctic Ocean.

The latter danger is also illustrated by the images below, showing the (lack of) sea ice in the ESAS and the Bering Strait. The image underneath shows the temperature anomaly of water.

[ click on images to enlarge ]Above NASA satellite image below shows the (lack of) sea ice in the ESAS and in the Bering Strait. The image below shows temperature anomaly of the water. In the ESAS, the water was 2.8°C or 5.1°F warmer on May 19, 2017, compared to 1981-2011.


In conclusion, the situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.

Earthquake east of Greenland triggers methane releases

So, 14/05/2017 - 16:33

An earthquake with a magnitude of M 4.5 on the Richter scale hit the seafloor 204 km East of Nord, Greenland, on May 8, 2017 at 04:48:53 (UTC). Location: 81.684°N 5.076°W. Depth: 10.0 km.

The inset shows that methane levels over 1950 ppb (magenta color) were recorded on the morning of May 8, 2017, by two satellites.

This is a reminder that earthquakes can destabilize methane hydrates, which can hold huge amounts of methane in sediments at the seafloor of the Arctic Ocean. As temperatures keep rising, snow and ice on Greenland and Svalbard keeps melting, taking away weight from the surface, making that isostatic rebound can increasingly trigger earthquakes on the faultline that crosses the Arctic Ocean.

Methane releases have followed earthquakes in the Arctic before, e.g. see this 2016 post, illustrating the danger of potentially huge methane releases in case of larger earthquakes in the Arctic.

Why is methane so important again? Below follow some images from the methane page


Over a 10-year timescale, methane emissions cause more warming than carbon dioxide emissions, as illustrated by the graph in the left-hand panel of above image.

Methane levels fluctuate with the time of year, higher mean levels are typically reached in September.

On September 14, 2016, methane levels at 367 mb were as high as 2697 ppb (locally), while global mean methane level was as high as 1865 ppb (above image).
On May 13, 2017, am, global mean methane levels were as high as 1844 ppb at altitudes corresponding to 383mb to 469 mb (MetOp-1 satellite), while local levels as high as 2485 ppb were recorded.

Methane levels have risen 256% from 1750 to 2015, as illustrated by the image on the right.
Growth in methane levels has been accelerating recently. Contained in existing data is a trend indicating that methane levels could increase by a third by 2030 and could almost double by 2040, as illustrated by the image below. 

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• High Methane Levels Follow Earthquake in Arctic Ocean
https://arctic-news.blogspot.com/2016/07/high-methane-levels-follow-earthquake-in-arctic-ocean.html

• Methane
https://arctic-news.blogspot.com/p/methane.html


Abrupt Warming - How Much And How Fast?

Sa, 13/05/2017 - 14:27

How much could temperatures rise? As above image shows, a rise of more than 10°C (18°F) could take place, resulting in mass extinction of many species, including humans.

How fast could such a temperature rise eventuate? As above image also shows, such a rise could take place within a few years. The polynomial trend is based on NASA January 2012-February 2017 anomalies from 1951-1980, adjusted by +0.59°C to cater for the rise from 1750 to 1951-1980. The trend points at a 3°C rise in the course of 2018, which would be devastating. Moreover, the rise doesn't stop there and the trend points at a 10°C rise as early as the year 2021.

Is this polynomial trend the most appropriate one? This has been discussed for years, e.g. at the Controversy Page, and more recently at Which Trend Is best?

The bottom of the image shows the warming elements that add up to the 10°C (18°F) temperature rise. Figures for five elements may be overestimated (as indicated by the ⇦ symbol) or underestimated (⇨ symbol), while figures in two elements could be either under- or overestimated depending on developments in other elements. Interaction between warming elements is included, i.e. where applicable, figures on the image include interaction based on initial figures and subsequently apportioned over the relevant elements.

Warming elements are discussed in more detail at the Extinction Page, while specific elements are also discussed in posts, e.g. methane hydrates are discussed at Methane Erupting From Arctic Ocean, decline of the snow and ice cover and associated feedbacks is discussed at Arctic Ocean Feedbacks and less take-up by oceans of CO₂ and heat from the atmosphere is discussed at 10°C or 18°F warmer by 2021?


Links

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• Controversy
https://arctic-news.blogspot.com/p/controversy.html

• Which Trend Is best?
https://arctic-news.blogspot.com/2017/03/which-trend-is-best.html

• 10°C or 18°F warmer by 2021?
https://arctic-news.blogspot.com/2017/04/10c-or-18f-warmer-by-2021.html

• Arctic Ocean Feedbacks
https://arctic-news.blogspot.com/2017/01/arctic-ocean-feedbacks.html

• Methane Erupting From Arctic Ocean
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html


Arctic Sea Ice May 2017

Do, 11/05/2017 - 14:45
Last year, the Arctic was some 3.5°C warmer than it was at the start of the Industrial Revolution. Was this 3.5°C a spike or was it part of a trend pointing at even higher temperature anomalies this year and the following years?


Above image shows NASA annual mean 64°N-90°N land-ocean temperature anomalies from 1951-1980, with +0.59°C added for the rise from 1750 to 1951-1980. A polynomial trend is added (based on 1880-2016 data), pointing at 4.5°C anomaly by 2019.

Will the Arctic keep warming over the coming years in line with this trend? Let's have a look at what affects temperatures in the Arctic most, specifically Ocean Heat, Sea Ice, Land Temperatures and Emissions.

1. Ocean Heat

Warmer Oceans on the Northern Hemisphere will contribute strongly to warming in the Arctic. Here's a graph showing a trend pointing at continued warming of the oceans on the Northern Hemisphere.

Will oceans keep warming like that, in particular the North Atlantic? The Coriolis force keeps pushing warm water of the North Atlantic along the Gulf Stream toward the Arctic Ocean.

On the image on the right, the Gulf Stream shows up as the warmer water (orange and yellow) off the coast of North America.

Thus, as oceans keep warming, warmer water will reach the Arctic Ocean, melting the sea ice from below.

The image on the right shows that the sea surface was 9.3°C or 16.8°F warmer than 1981-2011 on May 7, 2017, at the location marked by the green circle.

2. Sea ice

Meanwhile, the sun will warm up the sea ice from above. The sea ice acts as a barrier, insulating the water of the Arctic Ocean from the heat from above. As long as there is sea ice, water just underneath the sea ice will stay close to freezing point.

Sea ice can strongly affect the amount of heat that is retained by Earth. Sea ice reflects most sunlight back into space, but in the absence of sea ice, most sunlight will instead be absorbed by oceans.

For almost a year now, global sea ice extent has been way below what it used to be, meaning that huge amounts of sunlight that were previously reflected back into space, are now instead getting absorbed by Earth, as shown by the graph below (by Wipneus).

Over the past 365 days, most of the Arctic has been more than 2.5°C or 4.5°F warmer than it was in 1981-2010, as the image on the right illustrates. Note also the anomalies around Antarctica. Decline of the snow and ice cover contributes strongly to these temperature anomalies.

When looking at albedo changes, sea ice area is an even more critical measure than sea ice extent. For a discussion of the difference between area and extent, see this NSIDC page. The image below shows trends for both Arctic and Antarctic sea ice area pointing downward.


When looking at sea ice volume, zero sea ice in September 2017 is within the margins of the trendline below on the right.

[ Arctic sea ice, gone by Sept. 2017? ]Given the speed at which many feedbacks can kick in and the interaction between warming elements, Arctic sea ice volume could be zero by September 2017.

Arctic sea ice is at a record low volume for the time of the year (see graph below by Wipneus). This means that there is very little sea ice left to act as a buffer this year. Therefore, heat that won't be consumed in the process of melting the ice will instead speed up Arctic warming.

As said - less sea ice additionally makes that less sunlight will be reflected back into space, and that instead more heat will speed up Arctic warming.
As the sea ice gets thinner, it becomes more fragile. Furthermore, changes to the Jet Stream can fuel strong winds and waves, which are also more likely to hit the ice as the size of the open water increases.

The satellite image below of the Beaufort Sea shows that the sea ice is cracked in many places and broken into pieces by winds, waves, currents and ocean heat. A huge crack can be seen running along the Canadian Archipelago toward Greenland (bottom right on the image).


An animation (1.3 MB) is added at the end of this post showing the sea ice breaking into pieces in the Beaufort Sea from April 26 to May 10, 2017. It illustrates that a combined force of winds, waves, currents and ocean heat can break even the thicker ice into pieces, with the danger that all ice can be pushed out of the Arctic Ocean.

3. Temperatures on land

High temperatures on land will affect the Arctic in a number of ways. What kind of temperatures can be expected over the coming months, which are so critical for Arctic sea ice?

- Heatwaves

Heatwaves over the continents can more easily extend over the Arctic Ocean as the Northern Polar Jet Stream becomes more wavy. Heatwave conditions are more likely to occur as the jet stream is changing due to accelerated warming of the Arctic.

- Wildfires

High temperatures on land can also cause wildfires that can in turn cause huge quantities of emissions, including soot that when settling on snow and ice, can strongly speed up melting. The image below shows carbon dioxide as high as 607 ppm and carbon monoxide as high as 24.84 over Laos on May 4, 2017.


- Warm water from rivers flowing into the Arctic Ocean

Furthermore, high temperatures on land will warm up the water of rivers flowing into the Arctic Ocean.

- El Niño

An El Niño event can dramatically boost temperatures of the atmosphere. What are the projections for an El Niño in 2017? The image on the right, by the ECMWF (European Centre for Medium-Range Weather Forecasts), indicates an El Niño that is gaining strength.

4. Emissions and Greenhouse Gas Levels

Continued emissions and high greenhouse gas levels are responsible for warming of the planet. Have efforts to cut emissions been successful? Is growth in greenhouse gas levels slowing down? The image below shows accelerating growth of carbon dioxide levels recorded at Mauna Loa, Hawaii.

The image below shows carbon dioxide levels recorded at Barrow, Alaska.

The image below shows methane levels at Barrow, Alaska.
In conclusion, indications are that warming in the Arctic will continue in 2017, which spells bad news for Arctic sea ice and for the world at large, as discussed in earlier posts.

The situation is dire and calls for comprehensive and effective action, as described in the Climate Plan.


The animation below shows the break up of the sea ice in the Beaufort Sea from April 26 to May 10, 2017. It illustrates that a combined force of winds, waves, currents and ocean heat can break even the thicker ice into pieces, with the danger that all ice can be pushed out of the Arctic Ocean.


10°C or 18°F warmer by 2021?

Mo, 24/04/2017 - 11:09
Skyrocketing emissions 

On April 21, 2017, at 15:00 UTC, it was as hot as 46.6°C/115.8°F in Guinea, in West-Africa (at the location marked by the green spot on the map below).


That same time and day, a little bit to the south, at a spot in Sierra Leona, a level of carbon monoxide (CO) of 15.28 parts per million (ppm) was recorded, while the temperature there was 40.6°C or 105.1°F. Earlier that day (at 13:30 UTC), levels of carbon dioxide (CO₂) of 569 ppm and of sulfur dioxide (SO₂) of 149.97 µg/m³ were recorded at that same spot, shown on the bottom left corner of the image below (red marker).


These high emissions are the signature of wildfires, illustrating the threat of what can occur as temperatures keep rising.

Warming oceans

Oceans are hit by high temperatures as well. The image below shows sea surface temperature anomalies (from 1981-2011) on April 21, 2017, at selected locations.




Accelerating temperature rises

The image below illustrates the danger of accelerating temperature rises.


Above image uses trendlines based on data dating back to 1880, which becomes less appropriate as feedbacks start to kick in that accelerate such temperature rises. Indeed, some of the following feedbacks could strongly speed up temperature rises.

Less sunlight getting reflected back into space.

As illustrated by the image below, more ocean heat results in less sea ice. This makes that less sunlight gets reflected back into space and instead gets absorbed by the oceans.

[ Graph by Wipneus ]More ocean heat escaping from the Arctic Ocean into the atmosphere

As discussed before, as less heat is mixed down to deeper layers of oceans, more heat accumulates at or just below the surface. Stronger storms increase the possibility that more of this heat gets pushed into the Arctic Ocean, resulting in sea ice loss, which in turn makes that more heat can escape from the Arctic Ocean to the atmosphere, while more clouds over the Arctic Ocean make that less heat can get radiated out into space. As the temperature difference between the Arctic Ocean and the Equator decreases, changes are occurring to the Northern Polar Jet Stream that further speed up warming of the Arctic.

More heat remaining in atmosphere due to less ocean mixing

As also discussed before, warmer water tends to form a layer at the surface that does not mix well with the water below. This reduces the capability of oceans to take up heat and carbon dioxide from the atmosphere. Less take up by oceans of carbon dioxide will result in higher levels in the atmosphere, further speeding up global warming. Additionally, 93.4% of global warming currently goes into oceans. The more heat will remain in the atmosphere, the faster the temperature of the atmosphere will rise. As temperatures rise, more wildfires will erupt, adding further emissions, while heat-induced melting of permafrost will also cause more greenhouse gases to enter the atmosphere.

More seafloor methane entering the atmosphere 


Importantly, large parts of the Arctic Ocean are very shallow, making it easy for arrival of more ocean heat to warm up these seas and for heat to destabilize sediments at the seafloor that can contain huge amounts of methane, resulting in eruptions of methane from the seafloor, with much the methane entering the atmosphere without getting decomposed by microbes in the water, since many seas are only shallow, as discussed in earlier posts such as this one
How fast could temperatures rise?

When taking into account the many elements that are contributing to warming, a potential warming of 10°C (18°F) could take place, leading to rapid mass extinction of many species, including humans.[ Graph from: Which Trend is Best? ]So, how fast could such warming take place? As above image illustrates, it could happen as fast as within the next four years time.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Accelerating growth in CO₂ levels in the atmosphere
https://arctic-news.blogspot.com/2017/02/accelerating-growth-in-co2-levels-in-the-atmosphere.html

• Arctic Sea Ice Getting Terribly Thin
http://arctic-news.blogspot.com/2016/08/arctic-sea-ice-getting-terribly-thin.html

• Methane hydrateshttp://methane-hydrates.blogspot.com/2013/04/methane-hydrates.html

• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• Which Trend is Best?
http://arctic-news.blogspot.com/2017/03/which-trend-is-best.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

The Methane Threat

Do, 13/04/2017 - 14:29
Carbon dioxide levels in the atmosphere are accelerating. As illustrated by the image below, a linear trend hardly catches the acceleration, while a polynomial trend does make a better fit. The polynomial trend points at CO₂ levels of 437 ppm by 2026.


EPA animation: more extreme heatThis worrying acceleration is taking place while energy-related have been virtually flat over the past few years, according to figures by the EIA and by the Global Carbon Project. So, what makes growth in CO₂ levels in the atmosphere accelerate? As earlier discussed in this and this post, growth in CO₂ levels in the atmosphere is accelerating due to continued deforestation and soil degradation, due to ever more extreme weather events and due to accelerating warming that is making oceans unable to further take up carbon dioxide.


Ocean warming is accelerating on the Northern Hemisphere, as illustrated by above image, and a warmer Atlantic Ocean will push ever warmer water into the Arctic Ocean, further speeding up the decline of the sea ice and of permafrost.

[ click on images to enlarge ]Loss of Northern Hemisphere snow cover is alarming, especially in July, as depicted in above image. The panel on the left shows snow cover on the Northern Hemisphere in three areas, i.e. Greenland, North America and Eurasia. The center panel shows North America and the right panel shows Eurasia. While Greenland is losing huge amounts of ice from melting glaciers, a lot of snow cover still remains present on Greenland, unlike the permafrost in North America and especially Eurasia, which has all but disappeared in July.

[ for original image, see 2011 AGU poster ]Worryingly, the linear trend in the right panel points at zero snow cover in 2017, which should act as a warning that climate change could strike a lot faster than many may expect.

A recently-published study warns that permafrost loss is likely to be 4 million km² (about 1.5 million mi²) for each 1°C (1.8°F) temperature rise, about 20% higher than previous studies. Temperatures may well rise even faster, due to numerous self-reinforcing feedback loops that speed up the changes and due to interaction between the individual warming elements behind the changes.

[ Arctic sea ice, gone by Sept. 2017? ]One of the feedbacks is albedo loss that speeds up warming in the Arctic, in turn making permafrost release greenhouse gases such as carbon dioxide, nitrous oxide and methane.

Higher temperatures on land will make warmer water from rivers enter the Arctic Ocean and trigger wildfires resulting in huge emissions including black carbon that can settle on sea ice.

Given the many feedbacks and the interaction between warming elements, Arctic sea ice volume may decline even more rapidly than the image on the right may suggest.
[ Record sea ice volume anomalies since end 2016 ]
Ominously, sea ice volume anomalies have been at record levels for time of year since end 2016 (Wipneus graph right, PIOMAS data).

As the Gulf Stream pushes warmer water into the Arctic Ocean, there will no longer be a large buffer of sea ice there to consume the heat, as was common for the entire human history.

Moreover, forecasts are that temperatures will keep rising. The Australian Bureau of Meteorology reports that seven of eight models indicate that sea surface temperatures will exceed El Niño thresholds during the second half of 2017.

The Buffer has gone, feedback #14 on the Feedbacks pageWhere can all this extra heat go? Sea ice will start sealing off much of the surface of the Arctic Ocean by the end of September 2017, making it hard for more heat to escape the Arctic Ocean by entering the atmosphere. It looks like much of the extra heat will instead reach sediments at the seafloor of the Arctic Ocean that contain huge amounts of methane in currently still frozen hydrates.

The danger is that more and more heat will reach the seafloor and will destabilize methane hydrates contained in sediments at the bottom of the Arctic Ocean, resulting in huge methane eruptions.

As the image on the right shows, a polynomial trend based on NOAA July 1983 to January 2017 global monthly mean methane data, points at twice as much methane by 2034. Stronger methane releases from the seafloor could make such a doubling occur much earlier.

When also taking into account further elements contributing to warming, a potential warming of 10°C (18°F) could eventuate by the year 2026, i.e. within some nine years from now.

The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

• Accelerating growth in CO₂ levels in the atmosphere
https://arctic-news.blogspot.com/2017/02/accelerating-growth-in-co2-levels-in-the-atmosphere.html

• An observation-based constraint on permafrost loss as a function of global warming, by Chadburn et al. (2017)
http://www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate3262.html

• Reduction of forest soil respiration in response to nitrogen deposition, by Janssens et al. (2010)
http://www.nature.com/ngeo/journal/v3/n5/full/ngeo844.html

• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html


Gulf Stream is heating up

Do, 06/04/2017 - 06:42
El Niño 2017 is strengthening. On March 24, temperatures in Africa were as high as 50.6°C or 123°F.


The image below shows wildfires hitting Northern China and Far East Russia on April 4, 2017. The Amur River, which forms the boundary between China and Russia, is visible on this Terra/MODIS satellite image, with red dots indicating wildfires.


Emissions associated with such wildfires can be huge, as illustrated by the image below. On April 4, 2017, sulfur dioxide (SO₂) levels were as high as 766.29 µg/m³ at a spot (marked by the green circle, left panel) north of the Amur River, in Russia, while carbon dioxide (CO₂) levels were as high as 513 parts per million at that same spot and carbon monoxide (CO) levels there were as high as 17,402 parts per billion.


These high sulfur dioxide levels indicate that sulfur that has over the past few decades been deposited there from smokestacks of coal-fired power plants, tailpipes of vehicles, etc., can re-enter the atmosphere as a result of wildfires, confirming the conclusion of earlier studies such as by Hegg et al.

This indicates that sulfur levels in the atmosphere are higher than previously estimated, given that most previous estimates were mainly based on real-time emissions from industrial activity at the time. When adding revolitalization of previously-deposited sulfur (due to wildfires) into the picture, estimates for such aerosols' masking effect of the full wrath of global warming will be higher than previously thought, and increasingly so, as wildfires are becoming painfully more common as Earth continues to warm up.

This also implies that it becomes increasingly plausible that, when aerosol levels suddenly drop during heatwaves, wet bulb temperature starts crossing sustainability limits for humans without air-conditioning. Note that in July 2016, weather conditions at a spot in the U.S. came perilously close to this limit.

What could further contribute strongly to a rapid rise in global temperature is the combination of decline of Earth's snow and ice cover and eruptions of methane from the seafloor of the Arctic Ocean.

The Gulf Stream is heating up as the 2017 El Niño strengthens, fueled by record low global sea ice extent, which means that a lot of extra heat is getting absorbed globally (image below, by Wipneus).


Both Arctic and Antarctic sea ice extent were are record low on April 1, 2017, as the images below show.

Sea surface temperatures were as much as 5.9°C or 10.6°F warmer than 1981-2011 at the location marked by the green circle on the image below.


Over the next half year, increasingly warm waters will be carried by the Gulf Stream from the coast of North America to the Arctic Ocean. As this warmer water arrives in the Arctic Ocean, there will no longer be a large buffer of sea ice there to consume the heat, as was common for the past thousands of years and longer. Additionally, warmer water looks set to arrive in an Arctic Ocean that will be heated up like we've never seen before, as so much of the sunlight reaching the surface of the Arctic Ocean doesn't get reflected back into space anymore and as temperatures again look set to reach record highs in the Arctic during the northern summer.

Where can all this extra heat go? Sea ice will start sealing off much of the surface of the Arctic Ocean by the end of September 2017, making it hard for more heat to escape the Arctic Ocean by entering the atmosphere. The extremely dangerous situation is that it looks like much of the extra heat will instead reach sediments at the seafloor of the Arctic Ocean that contain huge amounts of methane in currently still frozen hydrates.


An image in an earlier post showed many cracks in the sea ice north of Greenland. Above image shows that huge cracks are also present in the sea ice in the Beaufort Sea.


On the combination images above and below, high concentrations of methane show up all over the Arctic Ocean, specifically over the Beaufort Sea and over and around Greenland. Note also the methane showing up over Antarctica, as discussed in an earlier post.


The situation is dire and calls for comprehensive and effective action, as described at the Climate Plan.


Links

• Climate Plan
https://arctic-news.blogspot.com/p/climateplan.html

• Extinction
https://arctic-news.blogspot.com/p/extinction.html

• How much warming have humans caused?
https://arctic-news.blogspot.com/2016/05/how-much-warming-have-humans-caused.html

•Earth losing her sea ice
https://arctic-news.blogspot.com/2017/03/earth-losing-her-sea-ice.html

• Methane Erupting From Arctic Ocean Seafloor
https://arctic-news.blogspot.com/2017/03/methane-erupting-from-arctic-ocean-seafloor.html

• Nitrogen and sulfur emissions from the burning of forest products near large urban areas, Hegg et al. (1987)
http://onlinelibrary.wiley.com/doi/10.1029/JD092iD12p14701/full

• Warning of mass extinction of species, including humans, within one decade
https://arctic-news.blogspot.com/2017/02/warning-of-mass-extinction-of-species-including-humans-within-one-decade.html

• Low sea ice extent contributes to high methane levels at both poles
https://arctic-news.blogspot.com/2017/03/low-sea-ice-extent-contributes-to-high-methane-levels-at-both-poles.html

• It could be unbearably hot in many places within a few years time
https://arctic-news.blogspot.com/2016/07/it-could-be-unbearably-hot-in-many-places-within-a-few-years-time.html



Mainstream Media Biased By Focusing On Climate Denial

Sa, 01/04/2017 - 09:43
Hearings of the House Committee on Science, Space and Technology recently degenerated into a farce, as three fringe scientists were paraded next to “mainstream-scientist” Michael Mann. The Hearing turned out to have little or no intention to live up to its stated goal of examining the “scientific method and process as it relates to climate change” and instead turned into a theater to stage climate science denial.

Reports of the event confirmed the bias of mainstream media to focus on climate denial while ignoring the side of the Climate Spectrum that is sounding the alarm, as also illustrated by the image below.


Indeed, in discussions on climate change, why ignore the side of the Climate Spectrum that is sounding the alarm? Accordingly, a recent poll at the ArcticNews group asked: “Who would you instead like to appear in a discussion with Michael Mann?” The results are shown below.


It must be said that some media did pick up warnings such as contained in a recent post at Arctic-news. Will there be further media following the example?